Log in to use our free company, program and sector update tracker feature.

Front page

ANSYS, Stanford and Honeywell collaborate to create more fuel-efficient aircraft engines

Engineers from Stanford University, Honeywell International and ANSYS are working together with simulation software to create more energy-efficient aircraft engines at lower costs.

As demand grows for increased gas turbine efficiency, engine manufacturers are challenged with creating designs that operate at higher temperatures. But that becomes a significant challenge as temperatures approach the melting point of some engine component material. A well-established method for maintaining turbine blade temperatures at acceptable levels is to employ "film-cooling," a technique in which cooler, compressor-discharge air is detoured around the combustor then ejected from precisely-machined holes placed over the surface of the turbine airfoil. Excessive use of compressor air for turbine film cooling can, however, reduce engine efficiency.

Historically, film-cooling-hole-placement on turbine airfoils has been optimized by elaborate experiments, sometimes necessitating engine testing. For decades, research engineers have been developing computer simulations of film cooling geometries with the ambition of reducing – if not eliminating – the need for expensive, time-consuming rig testing.

Stanford, with support from Honeywell and ANSYS®, is performing a new type of testing with 3-D magnetic resonance velocimetry to measure the velocity and concentration field in a test section. These methods measure the turbulent interaction of crossflow jets with the main flow, for a variety of jet configurations and orientations. These data sets provide an important benchmark against which the large available range of ANSYS turbulence models and computational methods can be compared. The objective is to develop validated models, methods and best practices for prediction of film cooling.

"This is the first time that an engineering software company has supported an extensive test series like this, and it illustrates the commitment of ANSYS to the continued upgrade of the turbulence models in ANSYS computational fluid dynamics solutions," said John K. Eaton, the Charles Lee Powell Foundation professor in Stanford's School of Engineering. "Our combined efforts are aimed at validating the turbulent mixing models in these tools over entire complex flow fields, something that has never been done before. Conducting this testing over a wide range of film cooling conditions provides a comprehensive test of the predictive capability."

"At 30,000 feet in the air, there's little margin for error," said Brad Hutchinson, global industry director for industrial equipment and rotating machinery at ANSYS. "By always focusing on solving the most complex problems – like the thin film cooling challenge Honeywell and Stanford are addressing – ANSYS ensures that our customers are armed with the tools that will help them to create the most innovative products on the market."

Press release issued by ANSYS, Inc. on September 30, 2014


 Contact details from our directory:
Stanford University Dept of Aeronautics & Astronautics Research/Consulting Services, Technical/Eng/Scientific Studies
Honeywell Aerospace Air Conditioning Equipment, Air Conditioning Equipment, Cockpit Printers, Airborne Communication Systems, Cargo Systems, Airspeed Indicators, WAAS Equipment, Starter Generators, Bleed Air Systems, Air Purification Systems, Flight Management Systems, Engine Parts, Pneumatic Systems Equipment, Automatic Flight Control Systems, Inertial Components & Systems, Multi-Mode Receivers (MMR), Auxiliary Power Units, Cabin Pressure Control Systems, Autopilots, Cockpit Control Systems, Avionics Management Systems, Automatic Direction Finders, Distance Measuring Equipment, Transceivers, VOR (Omnirange) Receivers, Radio Communications Equipment, GPS, Attitude and Heading Reference Systems, Radar/Radio Altimeters, Terrain Awareness and Warning Systems, Horizontal Situation Indicator, Heading Indicators, Onboard Intercom Systems, Electronic Flight Instrument Systems, Flight Recorders, Collision Avoidance Systems/TCAS, Fly-by-Wire Systems, Air Data Computers, Cabin Management Systems, Weather Mapping Radar, Emergency Locator Transmitters, Radar Transponders, IFF Interrogators, Glide Slope Receivers, Weapons Countermeasures, LCD Displays, Moving Maps, Enhanced Vision Systems (EVS), Inflight Entertainment
ANSYS, Inc. Simulation Services, Simulation Systems, Computer-aided Simulation


 Related directory sectors:
Technical Consultants
Engine Components
Design Software

Enhanced listings:

Ascent Aerospace
Ascent Aerospace is the leading provider of aerospace tooling systems, assembly automation and factory integration.

General Plastics Manufacturing Co.
General Plastics has been supplying OEMs, Tier 1 and Tier 2 companies with flame-retardant foam core materials and custom flexible foam molded parts for aircraft flight decks and interior cabins for over 50 years.

Victrex Plc
New VICTREX® AE250 composites and hybrid molding technology are changing the equation in Aerospace composites – find out more!

Beckwood Press
Your single source for aerospace forming equipment. Manufacturer of Triform Sheet hydroforming presses.

Belden Universal
Specialty universal joints and drive shafts, designed to satisfy even the most rigorous operating criteria. Belden Universal is AS9100C certified.

See our advertising tariff.


data pages remaining in monthly quota for non-subscribers

© Copyright of Airframer Limited, operated under licence by Stansted News Limited 2016. Terms & Conditions of reading.